上篇回顧:一文Linux內(nèi)核調(diào)試方法(一)
KGDB
kgdb提供了一種使用 gdb調(diào)試 Linux 內(nèi)核的機(jī)制。使用KGDB可以象調(diào)試普通的應(yīng)用程序那樣,在內(nèi)核中進(jìn)行設(shè)置斷點(diǎn)、檢查變量值、單步跟蹤程序運(yùn)行等操作。使用KGDB調(diào)試時(shí)需要兩臺(tái)機(jī)器,一臺(tái)作為開發(fā)機(jī)(Development Machine),另一臺(tái)作為目標(biāo)機(jī)(Target Machine),兩臺(tái)機(jī)器之間通過串口或者以太網(wǎng)口相連。串口連接線是一根RS-232接口的電纜,在其內(nèi)部?jī)啥说牡?腳(TXD)與第3腳(RXD)交叉相連,第7腳(接地腳)直接相連。調(diào)試過程中,被調(diào)試的內(nèi)核運(yùn)行在目標(biāo)機(jī)上,gdb調(diào)試器運(yùn)行在開發(fā)機(jī)上。 目前,kgdb發(fā)布支持i386、x86_64、32-bit PPC、SPARC等幾種體系結(jié)構(gòu)的調(diào)試器。
嵌入式進(jìn)階教程分門別類整理好了,看的時(shí)候十分方便,由于內(nèi)容較多,這里就截取一部分圖吧。
需要的朋友私信【內(nèi)核】即可領(lǐng)取。
內(nèi)核學(xué)習(xí)地址:Linux內(nèi)核源碼/內(nèi)存調(diào)優(yōu)/文件系統(tǒng)/進(jìn)程管理/設(shè)備驅(qū)動(dòng)/網(wǎng)絡(luò)協(xié)議棧-學(xué)習(xí)視頻教程-騰訊課堂
kgdb的調(diào)試原理
安裝kgdb調(diào)試環(huán)境需要為L(zhǎng)inux內(nèi)核應(yīng)用kgdb補(bǔ)丁,補(bǔ)丁實(shí)現(xiàn)的gdb遠(yuǎn)程調(diào)試所需要的功能包括命令處理、陷阱處理及串口通訊3個(gè)主要的部分。kgdb補(bǔ)丁的主要作用是在Linux內(nèi)核中添加了一個(gè)調(diào)試Stub。調(diào)試Stub是Linux內(nèi)核中的一小段代碼,提供了運(yùn)行g(shù)db的開發(fā)機(jī)和所調(diào)試內(nèi)核之間的一個(gè)媒介。gdb和調(diào)試stub之間通過gdb串行協(xié)議進(jìn)行通訊。gdb串行協(xié)議是一種基于消息的ASCII碼協(xié)議,包含了各種調(diào)試命令。當(dāng)設(shè)置斷點(diǎn)時(shí),kgdb負(fù)責(zé)在設(shè)置斷點(diǎn)的指令前增加一條trap指令,當(dāng)執(zhí)行到斷點(diǎn)時(shí)控制權(quán)就轉(zhuǎn)移到調(diào)試stub中去。此時(shí),調(diào)試stub的任務(wù)就是使用遠(yuǎn)程串行通信協(xié)議將當(dāng)前環(huán)境傳送給gdb,然后從gdb處接受命令。gdb命令告訴stub下一步該做什么,當(dāng)stub收到繼續(xù)執(zhí)行的命令時(shí),將恢復(fù)程序的運(yùn)行環(huán)境,把對(duì)CPU的控制權(quán)重新交還給內(nèi)核
Kgdb的安裝與設(shè)置
下面我們將以Linux 2.6.7內(nèi)核為例詳細(xì)介紹kgdb調(diào)試環(huán)境的建立過程。
軟硬件準(zhǔn)備
以下軟硬件配置取自筆者進(jìn)行試驗(yàn)的系統(tǒng)配置情況: kgdb補(bǔ)丁的版本遵循如下命名模式:Linux-A-kgdb-B,其中A表示Linux的內(nèi)核版本號(hào),B為kgdb的版本號(hào)。以試驗(yàn)使用的kgdb補(bǔ)丁為例,linux內(nèi)核的版本為linux-2.6.7,補(bǔ)丁版本為kgdb-2.2。 物理連接好串口線后,使用以下命令來測(cè)試兩臺(tái)機(jī)器之間串口連接情況,stty命令可以對(duì)串口參數(shù)進(jìn)行設(shè)置: 在development機(jī)上執(zhí)行:
stty ispeed 115200 ospeed 115200 -F /dev/ttyS0在target機(jī)上執(zhí)行:stty ispeed 115200 ospeed 115200 -F /dev/ttyS0在developement機(jī)上執(zhí)行:echo hello > /dev/ttyS0
在target機(jī)上執(zhí)行:
cat /dev/ttyS0
如果串口連接沒問題的話在將在target機(jī)的屏幕上顯示”hello”。
安裝與配置
下面我們需要應(yīng)用kgdb補(bǔ)丁到Linux內(nèi)核,設(shè)置內(nèi)核選項(xiàng)并編譯內(nèi)核。這方面的資料相對(duì)較少,筆者這里給出詳細(xì)的介紹。下面的工作在開發(fā)機(jī)(developement)上進(jìn)行,以上面介紹的試驗(yàn)環(huán)境為例,某些具體步驟在實(shí)際的環(huán)境中可能要做適當(dāng)?shù)母膭?dòng):
內(nèi)核的配置與編譯
[root@lisl tmp]# tar -jxvf linux-2.6.7.tar.bz2[root@lisl tmp]#tar -jxvf linux-2.6.7-kgdb-2.2.tar.tar[root@lisl tmp]#cd inux-2.6.7
請(qǐng)參照目錄補(bǔ)丁包中文件README給出的說明,執(zhí)行對(duì)應(yīng)體系結(jié)構(gòu)的補(bǔ)丁程序。由于試驗(yàn)在i386體系結(jié)構(gòu)上完成,所以只需要安裝一下補(bǔ)?。篶ore-lite.patch、i386-lite.patch、8250.patch、eth.patch、core.patch、i386.patch。應(yīng)用補(bǔ)丁文件時(shí),請(qǐng)遵循kgdb軟件包內(nèi)series文件所指定的順序,否則可能會(huì)帶來預(yù)想不到的問題。eth.patch文件是選擇以太網(wǎng)口作為調(diào)試的連接端口時(shí)需要運(yùn)用的補(bǔ)丁。 應(yīng)用補(bǔ)丁的命令如下所示:
[root@lisl tmp]#patch -p1 <../linux-2.6.7-kgdb-2.2/core-lite.patch
如果內(nèi)核正確,那么應(yīng)用補(bǔ)丁時(shí)應(yīng)該不會(huì)出現(xiàn)任何問題(不會(huì)產(chǎn)生*.rej文件)。為L(zhǎng)inux內(nèi)核添加了補(bǔ)丁之后,需要進(jìn)行內(nèi)核的配置。內(nèi)核的配置可以按照你的習(xí)慣選擇配置Linux內(nèi)核的任意一種方式。
[root@lisl tmp]#make menuconfig
在內(nèi)核配置菜單的Kernel hacking選項(xiàng)中選擇kgdb調(diào)試項(xiàng),例如:
[*] KGDB: kernel debugging with remote gdb Method for KGDB communication (KGDB: On generic serial port (8250)) —> [*] KGDB: Thread analysis [*] KGDB: Console messages through gdb[root@lisl tmp]#make
編譯內(nèi)核之前請(qǐng)注意Linux目錄下Makefile中的優(yōu)化選項(xiàng),默認(rèn)的Linux內(nèi)核的編譯都以-O2的優(yōu)化級(jí)別進(jìn)行。在這個(gè)優(yōu)化級(jí)別之下,編譯器要對(duì)內(nèi)核中的某些代碼的執(zhí)行順序進(jìn)行改動(dòng),所以在調(diào)試時(shí)會(huì)出現(xiàn)程序運(yùn)行與代碼順序不一致的情況??梢园袽akefile中的-O2選項(xiàng)改為-O,但不可去掉-O,否則編譯會(huì)出問題。為了使編譯后的內(nèi)核帶有調(diào)試信息,注意在編譯內(nèi)核的時(shí)候需要加上-g選項(xiàng)。
不過,當(dāng)選擇”Kernel debugging->Compile the kernel with debug info”選項(xiàng)后配置系統(tǒng)將自動(dòng)打開調(diào)試選項(xiàng)。另外,選擇”kernel debugging with remote gdb”后,配置系統(tǒng)將自動(dòng)打開”Compile the kernel with debug info”選項(xiàng)。
內(nèi)核編譯完成后,使用scp命令進(jìn)行將相關(guān)文件拷貝到target機(jī)上(當(dāng)然也可以使用其它的網(wǎng)絡(luò)工具,如rcp)。
[root@lisl tmp]#scp arch/i386/boot/bzImage root@192.168.6.13:/boot/vmlinuz-2.6.7-kgdb[root@lisl tmp]#scp System.map root@192.168.6.13:/boot/System.map-2.6.7-kgdb
如果系統(tǒng)啟動(dòng)使所需要的某些設(shè)備驅(qū)動(dòng)沒有編譯進(jìn)內(nèi)核的情況下,那么還需要執(zhí)行如下操作:
[root@lisl tmp]#mkinitrd /boot/initrd-2.6.7-kgdb 2.6.7[root@lisl tmp]#scp initrd-2.6.7-kgdb root@192.168.6.13:/boot/ initrd-2.6.7-kgdb
kgdb的啟動(dòng)
在將編譯出的內(nèi)核拷貝到target機(jī)器之后,需要配置系統(tǒng)引導(dǎo)程序,加入內(nèi)核的啟動(dòng)選項(xiàng)。以下是kgdb內(nèi)核引導(dǎo)參數(shù)的說明: 如表中所述,在kgdb 2.0版本之后內(nèi)核的引導(dǎo)參數(shù)已經(jīng)與以前的版本有所不同。使用grub引導(dǎo)程序時(shí),直接將kgdb參數(shù)作為內(nèi)核vmlinuz的引導(dǎo)參數(shù)。下面給出引導(dǎo)器的配置示例。
title 2.6.7 kgdbroot (hd0,0)kernel /boot/vmlinuz-2.6.7-kgdb ro root=/dev/hda1 kgdbwait kgdb8250=1,115200
在使用lilo作為引導(dǎo)程序時(shí),需要把kgdb參放在由append修飾的語句中。下面給出使用lilo作為引導(dǎo)器時(shí)的配置示例。
image=/boot/vmlinuz-2.6.7-kgdblabel=kgdb read-only root=/dev/hda3append=”gdb gdbttyS=1 gdbbaud=115200″
保存好以上配置后重新啟動(dòng)計(jì)算機(jī),選擇啟動(dòng)帶調(diào)試信息的內(nèi)核,內(nèi)核將在短暫的運(yùn)行后在創(chuàng)建init內(nèi)核線程之前停下來,打印出以下信息,并等待開發(fā)機(jī)的連接。
Waiting for connection from remote gdb…
在開發(fā)機(jī)上執(zhí)行:
gdbfile vmlinuxset remotebaud 115200target remote /dev/ttyS0
其中vmlinux是指向源代碼目錄下編譯出來的Linux內(nèi)核文件的鏈接,它是沒有經(jīng)過壓縮的內(nèi)核文件,gdb程序從該文件中得到各種符號(hào)地址信息。
這樣,就與目標(biāo)機(jī)上的kgdb調(diào)試接口建立了聯(lián)系。一旦建立聯(lián)接之后,對(duì)Linux內(nèi)的調(diào)試工作與對(duì)普通的運(yùn)用程序的調(diào)試就沒有什么區(qū)別了。任何時(shí)候都可以通過鍵入ctrl+c打斷目標(biāo)機(jī)的執(zhí)行,進(jìn)行具體的調(diào)試工作。 在kgdb 2.0之前的版本中,編譯內(nèi)核后在arch/i386/kernel目錄下還會(huì)生成可執(zhí)行文件gdbstart。將該文件拷貝到target機(jī)器的/boot目錄下,此時(shí)無需更改內(nèi)核的啟動(dòng)配置文件,直接使用命令:
[root@lisl boot]#gdbstart -s 115200 -t /dev/ttyS0
可以在KGDB內(nèi)核引導(dǎo)啟動(dòng)完成后建立開發(fā)機(jī)與目標(biāo)機(jī)之間的調(diào)試聯(lián)系。 通過網(wǎng)絡(luò)接口進(jìn)行調(diào)試
kgdb也支持使用以太網(wǎng)接口作為調(diào)試器的連接端口。在對(duì)Linux內(nèi)核應(yīng)用補(bǔ)丁包時(shí),需應(yīng)用eth.patch補(bǔ)丁文件。配置內(nèi)核時(shí)在Kernel hacking中選擇kgdb調(diào)試項(xiàng),配置kgdb調(diào)試端口為以太網(wǎng)接口,例如:
[*]KGDB: kernel debugging with remote gdbMethod for KGDB communication (KGDB: On ethernet) —> ( ) KGDB: On generic serial port (8250)(X) KGDB: On ethernet
另外使用eth0網(wǎng)口作為調(diào)試端口時(shí),grub.list的配置如下:
title 2.6.7 kgdbroot (hd0,0)kernel /boot/vmlinuz-2.6.7-kgdb ro root=/dev/hda1 kgdbwait kgdboe=@192.168.5.13/,@192.168. 6.13/
其他的過程與使用串口作為連接端口時(shí)的設(shè)置過程相同。 注意:盡管可以使用以太網(wǎng)口作為kgdb的調(diào)試端口,使用串口作為連接端口更加簡(jiǎn)單易行,kgdb項(xiàng)目組推薦使用串口作為調(diào)試端口。 模塊的調(diào)試方法
內(nèi)核可加載模塊的調(diào)試具有其特殊性。由于內(nèi)核模塊中各段的地址是在模塊加載進(jìn)內(nèi)核的時(shí)候才最終確定的,所以develop機(jī)的gdb無法得到各種符號(hào)地址信息。所以,使用kgdb調(diào)試模塊所需要解決的一個(gè)問題是,需要通過某種方法獲得可加載模塊的最終加載地址信息,并把這些信息加入到gdb環(huán)境中。 I、在Linux 2.4內(nèi)核中的內(nèi)核模塊調(diào)試方法 在Linux2.4.x內(nèi)核中,可以使用insmod -m命令輸出模塊的加載信息,例如:
[root@lisl tmp]# insmod -m hello.ko >modaddr
查看模塊加載信息文件modaddr如下:
.this 00000060 c88d8000 2**2.text 00000035 c88d8060 2**2.rodata 00000069 c88d80a0 2**5…….data 00000000 c88d833c 2**2.bss 00000000 c88d833c 2**2……
在這些信息中,我們關(guān)心的只有4個(gè)段的地址:.text、.rodata、.data、.bss。在development機(jī)上將以上地址信息加入到gdb中,這樣就可以進(jìn)行模塊功能的測(cè)試了。
(gdb) Add-symbol-file hello.o 0xc88d8060 -s .data 0xc88d80a0 -s .rodata 0xc88d80a0 -s .bss 0x c88d833c
這種方法也存在一定的不足,它不能調(diào)試模塊初始化的代碼,因?yàn)榇藭r(shí)模塊初始化代碼已經(jīng)執(zhí)行過了。而如果不執(zhí)行模塊的加載又無法獲得模塊插入地址,更不可能在模塊初始化之前設(shè)置斷點(diǎn)了。對(duì)于這種調(diào)試要求可以采用以下替代方法。 在target機(jī)上用上述方法得到模塊加載的地址信息,然后再用rmmod卸載模塊。在development機(jī)上將得到的模塊地址信息導(dǎo)入到gdb環(huán)境中,在內(nèi)核代碼的調(diào)用初始化代碼之前設(shè)置斷點(diǎn)。這樣,在target機(jī)上再次插入模塊時(shí),代碼將在執(zhí)行模塊初始化之前停下來,這樣就可以使用gdb命令調(diào)試模塊初始化代碼了。 另外一種調(diào)試模塊初始化函數(shù)的方法是:當(dāng)插入內(nèi)核模塊時(shí),內(nèi)核模塊機(jī)制將調(diào)用函數(shù)sys_init_module(kernel/modle.c)執(zhí)行對(duì)內(nèi)核模塊的初始化,該函數(shù)將調(diào)用所插入模塊的初始化函數(shù)。程序代碼片斷如下:
…… ……if (mod->init != NULL)ret = mod->init();…… ……
在該語句上設(shè)置斷點(diǎn),也能在執(zhí)行模塊初始化之前停下來。
在Linux 2.6.x內(nèi)核中的內(nèi)核模塊調(diào)試方法
Linux 2.6之后的內(nèi)核中,由于module-init-tools工具的更改,insmod命令不再支持-m參數(shù),只有采取其他的方法來獲取模塊加載到內(nèi)核的地址。通過分析ELF文件格式,我們知道程序中各段的意義如下: .text(代碼段):用來存放可執(zhí)行文件的操作指令,也就是說是它是可執(zhí)行程序在內(nèi)存種的鏡像。 .data(數(shù)據(jù)段):數(shù)據(jù)段用來存放可執(zhí)行文件中已初始化全局變量,也就是存放程序靜態(tài)分配的變量和全局變量。 .bss(BSS段):BSS段包含了程序中未初始化全局變量,在內(nèi)存中 bss段全部置零。 .rodata(只讀段):該段保存著只讀數(shù)據(jù),在進(jìn)程映象中構(gòu)造不可寫的段。 通過在模塊初始化函數(shù)中放置一下代碼,我們可以很容易地獲得模塊加載到內(nèi)存中的地址。
……int bss_var;static int hello_init(void){ printk(KERN_ALERT “Text location .text(Code Segment):%p “,hello_init); static int data_var=0; printk(KERN_ALERT “Data Location .data(Data Segment):%p “,&data_var); printk(KERN_ALERT “BSS Location: .bss(BSS Segment):%p “,&bss_var); ……}Module_init(hello_init);
這里,通過在模塊的初始化函數(shù)中添加一段簡(jiǎn)單的程序,使模塊在加載時(shí)打印出在內(nèi)核中的加載地址。.rodata段的地址可以通過執(zhí)行命令readelf -e hello.ko,取得.rodata在文件中的偏移量并加上段的align值得出。
為了使讀者能夠更好地進(jìn)行模塊的調(diào)試,kgdb項(xiàng)目還發(fā)布了一些腳本程序能夠自動(dòng)探測(cè)模塊的插入并自動(dòng)更新gdb中模塊的符號(hào)信息。這些腳本程序的工作原理與前面解釋的工作過程相似。硬件斷點(diǎn)
kgdb提供對(duì)硬件調(diào)試寄存器的支持。在kgdb中可以設(shè)置三種硬件斷點(diǎn):執(zhí)行斷點(diǎn)(Execution Breakpoint)、寫斷點(diǎn)(Write Breakpoint)、訪問斷點(diǎn)(Access Breakpoint)但不支持I/O訪問的斷點(diǎn)。 目前,kgdb對(duì)硬件斷點(diǎn)的支持是通過宏來實(shí)現(xiàn)的,最多可以設(shè)置4個(gè)硬件斷點(diǎn),這些斷點(diǎn)的用法如下: 在有些情況下,硬件斷點(diǎn)的使用對(duì)于內(nèi)核的調(diào)試是非常方便的。
在VMware中搭建調(diào)試環(huán)境,kgdb調(diào)試環(huán)境需要使用兩臺(tái)微機(jī)分別充當(dāng)development機(jī)和target機(jī),使用VMware后我們只使用一臺(tái)計(jì)算機(jī)就可以順利完成kgdb調(diào)試環(huán)境的搭建。
以windows下的環(huán)境為例,創(chuàng)建兩臺(tái)虛擬機(jī),一臺(tái)作為開發(fā)機(jī),一臺(tái)作為目標(biāo)機(jī)。 虛擬機(jī)之間的串口連接
虛擬機(jī)中的串口連接可以采用兩種方法。一種是指定虛擬機(jī)的串口連接到實(shí)際的COM上,例如開發(fā)機(jī)連接到COM1,目標(biāo)機(jī)連接到COM2,然后把兩個(gè)串口通過串口線相連接。另一種更為簡(jiǎn)便的方法是:在較高一些版本的VMware中都支持把串口映射到命名管道,把兩個(gè)虛擬機(jī)的串口映射到同一個(gè)命名管道。例如,在兩個(gè)虛擬機(jī)中都選定同一個(gè)命名管道 .pipecom_1,指定target機(jī)的COM口為server端,并選擇”The other end is a virtual machine”屬性;指定development機(jī)的COM口端為client端,同樣指定COM口的”The other end is a virtual machine”屬性。
對(duì)于IO mode屬性,在target上選中”Yield CPU on poll”復(fù)選擇框,development機(jī)不選。這樣,可以無需附加任何硬件,利用虛擬機(jī)就可以搭建kgdb調(diào)試環(huán)境。 即降低了使用kgdb進(jìn)行調(diào)試的硬件要求,也簡(jiǎn)化了建立調(diào)試環(huán)境的過程。
VMware的使用技巧
VMware虛擬機(jī)是比較占用資源的,尤其是象上面那樣在Windows中使用兩臺(tái)虛擬機(jī)。因此,最好為系統(tǒng)配備512M以上的內(nèi)存,每臺(tái)虛擬機(jī)至少分配128M的內(nèi)存。這樣的硬件要求,對(duì)目前主流配置的PC而言并不是過高的要求。
出于系統(tǒng)性能的考慮,在VMware中盡量使用字符界面進(jìn)行調(diào)試工作。同時(shí),Linux系統(tǒng)默認(rèn)情況下開啟了sshd服務(wù),建議使用SecureCRT登陸到Linux進(jìn)行操作,這樣可以有較好的用戶使用界面。 在Linux下的虛擬機(jī)中使用kgdb
對(duì)于在Linux下面使用VMware虛擬機(jī)的情況,筆者沒有做過實(shí)際的探索。從原理上而言,只需要在Linux下只要?jiǎng)?chuàng)建一臺(tái)虛擬機(jī)作為target機(jī),開發(fā)機(jī)的工作可以在實(shí)際的Linux環(huán)境中進(jìn)行,搭建調(diào)試環(huán)境的過程與上面所述的過程類似。由于只需要?jiǎng)?chuàng)建一臺(tái)虛擬機(jī),所以使用Linux下的虛擬機(jī)搭建kgdb調(diào)試環(huán)境對(duì)系統(tǒng)性能的要求較低。(vmware已經(jīng)推出了Linux下的版本)還可以在development機(jī)上配合使用一些其他的調(diào)試工具,例如功能更強(qiáng)大的cgdb、圖形界面的DDD調(diào)試器等,以方便內(nèi)核的調(diào)試工作。
kgdb的一些特點(diǎn)和不足
使用kgdb作為內(nèi)核調(diào)試環(huán)境最大的不足在于對(duì)kgdb硬件環(huán)境的要求較高,必須使用兩臺(tái)計(jì)算機(jī)分別作為target和development機(jī)。盡管使用虛擬機(jī)的方法可以只用一臺(tái)PC即能搭建調(diào)試環(huán)境,但是對(duì)系統(tǒng)其他方面的性能也提出了一定的要求,同時(shí)也增加了搭建調(diào)試環(huán)境時(shí)復(fù)雜程度。
另外,kgdb內(nèi)核的編譯、配置也比較復(fù)雜,需要一定的技巧,筆者當(dāng)時(shí)做的時(shí)候也是費(fèi)了很多周折。當(dāng)調(diào)試過程結(jié)束后時(shí),還需要重新制作所要發(fā)布的內(nèi)核。使用kgdb并不能進(jìn)行全程調(diào)試,也就是說kgdb并不能用于調(diào)試系統(tǒng)一開始的初始化引導(dǎo)過程。
不過,kgdb是一個(gè)不錯(cuò)的內(nèi)核調(diào)試工具,使用它可以進(jìn)行對(duì)內(nèi)核的全面調(diào)試,甚至可以調(diào)試內(nèi)核的中斷處理程序。如果在一些圖形化的開發(fā)工具的幫助下,對(duì)內(nèi)核的調(diào)試將更方便。
使用SkyEye構(gòu)建Linux內(nèi)核調(diào)試環(huán)境
SkyEye是一個(gè)開源軟件項(xiàng)目(OPenSource Software),SkyEye項(xiàng)目的目標(biāo)是在通用的Linux和Windows平臺(tái)上模擬常見的嵌入式計(jì)算機(jī)系統(tǒng)。SkyEye實(shí)現(xiàn)了一個(gè)指令級(jí)的硬件模擬平臺(tái),可以模擬多種嵌入式開發(fā)板,支持多種CPU指令集。SkyEye 的核心是 GNU 的 gdb 項(xiàng)目,它把gdb和 ARM Simulator很好地結(jié)合在了一起。加入ARMulator 的功能之后,它就可以來仿真嵌入式開發(fā)板,在它上面不僅可以調(diào)試硬件驅(qū)動(dòng),還可以調(diào)試操作系統(tǒng)。Skyeye項(xiàng)目目前已經(jīng)在嵌入式系統(tǒng)開發(fā)領(lǐng)域得到了很大的推廣。
SkyEye的安裝和μcLinux內(nèi)核編譯
SkyEye的安裝
SkyEye的安裝不是本文要介紹的重點(diǎn),目前已經(jīng)有大量的資料對(duì)此進(jìn)行了介紹。有關(guān)SkyEye的安裝與使用的內(nèi)容請(qǐng)查閱參考資料[11]。由于skyeye面目主要用于嵌入式系統(tǒng)領(lǐng)域,所以在skyeye上經(jīng)常使用的是μcLinux系統(tǒng),當(dāng)然使用Linux作為skyeye上運(yùn)行的系統(tǒng)也是可以的。由于介紹μcLinux 2.6在skyeye上編譯的相關(guān)資料并不多,所以下面進(jìn)行詳細(xì)介紹。 μcLinux 2.6.x的編譯
要在SkyEye中調(diào)試操作系統(tǒng)內(nèi)核,首先必須使被調(diào)試內(nèi)核能在SkyEye所模擬的開發(fā)板上正確運(yùn)行。因此,正確編譯待調(diào)試操作系統(tǒng)內(nèi)核并配置SkyEye是進(jìn)行內(nèi)核調(diào)試的第一步。下面我們以SkyEye模擬基于Atmel AT91X40的開發(fā)板,并運(yùn)行μcLinux 2.6為例介紹SkyEye的具體調(diào)試方法。 安裝交叉編譯環(huán)境
先安裝交叉編譯器。盡管在一些資料中說明使用工具鏈arm-elf-tools-20040427.sh ,但是由于arm-elf-xxx與arm-linux-xxx對(duì)宏及鏈接處理的不同,經(jīng)驗(yàn)證明使用arm-elf-xxx工具鏈在鏈接vmlinux的最后階段將會(huì)出錯(cuò)。所以這里我們使用的交叉編譯工具鏈?zhǔn)牵篴rm-uclinux-tools-base-gcc3.4.0-20040713.sh,關(guān)于該交叉編譯工具鏈的下載地址請(qǐng)參見[6]。注意以下步驟最好用root用戶來執(zhí)行。
[root@lisl tmp]#chmod +x arm-uclinux-tools-base-gcc3.4.0-20040713.sh[root@lisl tmp]#./arm-uclinux-tools-base-gcc3.4.0-20040713.sh
安裝交叉編譯工具鏈之后,請(qǐng)確保工具鏈安裝路徑存在于系統(tǒng)PATH變量中。
制作μcLinux內(nèi)核
得到μcLinux發(fā)布包的一個(gè)最容易的方法是直接訪問uClinux.org站點(diǎn)[7]。該站點(diǎn)發(fā)布的內(nèi)核版本可能不是最新的,但你能找到一個(gè)最新的μcLinux補(bǔ)丁以及找一個(gè)對(duì)應(yīng)的Linux內(nèi)核版本來制作一個(gè)最新的μcLinux內(nèi)核。這里,將使用這種方法來制作最新的μcLinux內(nèi)核。目前(筆者記錄編寫此文章時(shí)),所能得到的發(fā)布包的最新版本是uClinux-dist.20041215.tar.gz。
下載uClinux-dist.20041215.tar.gz,文件的下載地址請(qǐng)參見[7]。 下載linux-2.6.9-hsc0.patch.gz,文件的下載地址請(qǐng)參見[8]。 下載linux-2.6.9.tar.bz2,文件的下載地址請(qǐng)參見[9]。 現(xiàn)在我們得到了整個(gè)的linux-2.6.9源代碼,以及所需的內(nèi)核補(bǔ)丁。請(qǐng)準(zhǔn)備一個(gè)有2GB空間的目錄里來完成以下制作μcLinux內(nèi)核的過程。
[root@lisl tmp]# tar -jxvf uClinux-dist-20041215.tar.bz2[root@lisl uClinux-dist]# tar -jxvf linux-2.6.9.tar.bz2[root@lisl uClinux-dist]# gzip -dc linux-2.6.9-hsc0.patch.gz | patch -p0
或者使用:
[root@lisl uClinux-dist]# gunzip linux-2.6.9-hsc0.patch.gz [root@lisl uClinux-dist]patch -p0 < linux-2.6.9-hsc0.patch
執(zhí)行以上過程后,將在linux-2.6.9/arch目錄下生成一個(gè)補(bǔ)丁目錄-armnommu。刪除原來μcLinux目錄里的linux-2.6.x(即那個(gè)linux-2.6.9-uc0),并將我們打好補(bǔ)丁的Linux內(nèi)核目錄更名為linux-2.6.x。
[root@lisl uClinux-dist]# rm -rf linux-2.6.x/[root@lisl uClinux-dist]# mv linux-2.6.9 linux-2.6.x
配置和編譯μcLinux內(nèi)核
因?yàn)橹皇浅鲇谡{(diào)試μcLinux內(nèi)核的目的,這里沒有生成uClibc庫文件及romfs.img文件。在發(fā)布μcLinux時(shí),已經(jīng)預(yù)置了某些常用嵌入式開發(fā)板的配置文件,因此這里直接使用這些配置文件,過程如下:
[root@lisl uClinux-dist]# cd linux-2.6.x[root@lisl linux-2.6.x]#make ARCH=armnommu CROSS_COMPILE=arm-uclinux- atmel_deconfig
atmel_deconfig文件是μcLinux發(fā)布時(shí)提供的一個(gè)配置文件,存放于目錄linux-2.6.x /arch/armnommu/configs/中。
[root@lisl linux-2.6.x]#make ARCH=armnommu CROSS_COMPILE=arm-uclinux- oldconfig
下面編譯配置好的內(nèi)核:
[root@lisl linux-2.6.x]# make ARCH=armnommu CROSS_COMPILE=arm-uclinux- v=1
一般情況下,編譯將順利結(jié)束并在Linux-2.6.x/目錄下生成未經(jīng)壓縮的μcLinux內(nèi)核文件vmlinux。需要注意的是為了調(diào)試μcLinux內(nèi)核,需要打開內(nèi)核編譯的調(diào)試選項(xiàng)-g,使編譯后的內(nèi)核帶有調(diào)試信息。打開編譯選項(xiàng)的方法可以選擇: “Kernel debugging->Compile the kernel with debug info”后將自動(dòng)打開調(diào)試選項(xiàng)。也可以直接修改linux-2.6.x目錄下的Makefile文件,為其打開調(diào)試開關(guān)。方法如下:。
CFLAGS += -g
最容易出現(xiàn)的問題是找不到arm-uclinux-gcc命令的錯(cuò)誤,主要原因是PATH變量中沒有 包含arm-uclinux-gcc命令所在目錄。在arm-linux-gcc的缺省安裝情況下,它的安裝目錄是/root/bin/arm-linux-tool/,使用以下命令將路徑加到PATH環(huán)境變量中。
Export PATH $PATH:/root/bin/arm-linux-tool/bin
文件系統(tǒng)的制作
Linux內(nèi)核在啟動(dòng)的時(shí)的最后操作之一是加載根文件系統(tǒng)。根文件系統(tǒng)中存放了嵌入式 系統(tǒng)使用的所有應(yīng)用程序、文件及其他一些需要用到的服務(wù)。出于文章篇幅的考慮,這里不打算介紹文件系統(tǒng)的制作方法,讀者可以查閱一些其他的相關(guān)資料。值得注意的是,由配置文件skyeye.conf指定了裝載到內(nèi)核中的跟蹤文件系統(tǒng)。
使用SkyEye調(diào)試
編譯完μcLinux內(nèi)核后,就可以在SkyEye中調(diào)試該ELF執(zhí)行文件格式的內(nèi)核了。前面已經(jīng)說過利用SkyEye調(diào)試內(nèi)核與使用gdb調(diào)試運(yùn)用程序的方法相同。 需要提醒讀者的是,SkyEye的配置文件-skyeye.conf記錄了模擬的硬件配置和模擬執(zhí)行行為。該配置文件是SkyEye系統(tǒng)中一個(gè)及其重要的文件,很多錯(cuò)誤和異常情況的發(fā)生都和該文件有關(guān)。在安裝配置SkyEye出錯(cuò)時(shí),請(qǐng)首先檢查該配置文件然后再進(jìn)行其他的工作。此時(shí),所有的準(zhǔn)備工作已經(jīng)完成,就可以進(jìn)行內(nèi)核的調(diào)試工作了。
使用SkyEye調(diào)試內(nèi)核的特點(diǎn)和不足
在SkyEye中可以進(jìn)行對(duì)Linux系統(tǒng)內(nèi)核的全程調(diào)試。由于SkyEye目前主要支持基于ARM內(nèi)核的CPU,因此一般而言需要使用交叉編譯工具編譯待調(diào)試的Linux系統(tǒng)內(nèi)核。另外,制作SkyEye中使用的內(nèi)核編譯、配置過程比較復(fù)雜、繁瑣。不過,當(dāng)調(diào)試過程結(jié)束后無需重新制作所要發(fā)布的內(nèi)核。 SkyEye只是對(duì)系統(tǒng)硬件進(jìn)行了一定程度上的模擬,所以在SkyEye與真實(shí)硬件環(huán)境相比較而言還是有一定的差距,這對(duì)一些與硬件緊密相關(guān)的調(diào)試可能會(huì)有一定的影響,例如驅(qū)動(dòng)程序的調(diào)試。不過對(duì)于大部分軟件的調(diào)試,SkyEye已經(jīng)提供了精度足夠的模擬了。 SkyEye的下一個(gè)目標(biāo)是和eclipse結(jié)合,有了圖形界面,能為調(diào)試和查看源碼提供一些方便。
KDB
Linux 內(nèi)核調(diào)試器(KDB)允許您調(diào)試 Linux 內(nèi)核。這個(gè)恰如其名的工具實(shí)質(zhì)上是內(nèi)核代碼的補(bǔ)丁,它允許高手訪問內(nèi)核內(nèi)存和數(shù)據(jù)結(jié)構(gòu)。KDB 的主要優(yōu)點(diǎn)之一就是它不需要用另一臺(tái)機(jī)器進(jìn)行調(diào)試:您可以調(diào)試正在運(yùn)行的內(nèi)核。
設(shè)置一臺(tái)用于 KDB 的機(jī)器需要花費(fèi)一些工作,因?yàn)樾枰o內(nèi)核打補(bǔ)丁并進(jìn)行重新編譯。KDB 的用戶應(yīng)當(dāng)熟悉 Linux 內(nèi)核的編譯(在一定程度上還要熟悉內(nèi)核的內(nèi)部機(jī)理)。 在本文中,我們將從有關(guān)下載 KDB 補(bǔ)丁、打補(bǔ)丁、(重新)編譯內(nèi)核以及啟動(dòng) KDB 方面的信息著手。然后我們將了解 KDB 命令并研究一些較常用的命令。最后,我們將研究一下有關(guān)設(shè)置和顯示選項(xiàng)方面的一些詳細(xì)信息。
入門
KDB 項(xiàng)目是由 Silicon Graphics 維護(hù)的,您需要從它的 FTP 站點(diǎn)下載與內(nèi)核版本有關(guān)的補(bǔ)丁。(在編寫本文時(shí))可用的最新 KDB 版本是 4.2。您將需要下載并應(yīng)用兩個(gè)補(bǔ)丁。一個(gè)是“公共的”補(bǔ)丁,包含了對(duì)通用內(nèi)核代碼的更改,另一個(gè)是特定于體系結(jié)構(gòu)的補(bǔ)丁。補(bǔ)丁可作為 bz2 文件獲取。例如,在運(yùn)行 2.4.20 內(nèi)核的 x86 機(jī)器上,您會(huì)需要 kdb-v4.2-2.4.20-common-1.bz2 和 kdb-v4.2-2.4.20-i386-1.bz2。 這里所提供的所有示例都是針對(duì) i386 體系結(jié)構(gòu)和 2.4.20 內(nèi)核的。您將需要根據(jù)您的機(jī)器和內(nèi)核版本進(jìn)行適當(dāng)?shù)母?。您還需要擁有 root 許可權(quán)以執(zhí)行這些操作。 將文件復(fù)制到 /usr/src/linux 目錄中并從用 bzip2 壓縮的文件解壓縮補(bǔ)丁文件:
#bzip2 -d kdb-v4.2-2.4.20-common-1.bz2#bzip2 -d kdb-v4.2-2.4.20-i386-1.bz2
您將獲得 kdb-v4.2-2.4.20-common-1 和 kdb-v4.2-2.4-i386-1 文件。 現(xiàn)在,應(yīng)用這些補(bǔ)?。?/p>
#patch -p1 2-2.4.20-common-1#patch -p1 2-2.4.20-i386-1
這些補(bǔ)丁應(yīng)該干凈利落地加以應(yīng)用。查找任何以 .rej 結(jié)尾的文件。這個(gè)擴(kuò)展名表明這些是失敗的補(bǔ)丁。如果內(nèi)核樹沒問題,那么補(bǔ)丁的應(yīng)用就不會(huì)有任何問題。
接下來,需要構(gòu)建內(nèi)核以支持 KDB。第一步是設(shè)置 CONFIG_KDB 選項(xiàng)。使用您喜歡的配置機(jī)制(xconfig 和 menuconfig 等)來完成這一步。轉(zhuǎn)到結(jié)尾處的“Kernel hacking”部分并選擇“Built-in Kernel Debugger support”選項(xiàng)。
您還可以根據(jù)自己的偏好選擇其它兩個(gè)選項(xiàng)。選擇“Compile the kernel with frame pointers”選項(xiàng)(如果有的話)則設(shè)置CONFIG_FRAME_POINTER 標(biāo)志。這將產(chǎn)生更好的堆棧回溯,因?yàn)閹羔樇拇嫫鞅挥米鲙羔樁皇峭ㄓ眉拇嫫?。您還可以選擇“KDB off by default”選項(xiàng)。這將設(shè)置 CONFIG_KDB_OFF 標(biāo)志,并且在缺省的情況下將關(guān)閉 KDB。我們將在后面一節(jié)中對(duì)此進(jìn)行詳細(xì)介紹。
保存配置,然后退出。重新編譯內(nèi)核。建議在構(gòu)建內(nèi)核之前執(zhí)行“make clean”。用常用的方式安裝內(nèi)核并引導(dǎo)它。
初始化并設(shè)置環(huán)境變量
您可以定義將在 KDB 初始化期間執(zhí)行的 KDB 命令。需要在純文本文件 kdb_cmds 中定義這些命令,該文件位于 Linux 源代碼樹(當(dāng)然是在打了補(bǔ)丁之后)的 KDB 目錄中。該文件還可以用來定義設(shè)置顯示和打印選項(xiàng)的環(huán)境變量。文件開頭的注釋提供了編輯文件方面的幫助。使用這個(gè)文件的缺點(diǎn)是,在您更改了文件之后需要重新構(gòu)建并重新安裝內(nèi)核。
激活 KDB
如果編譯期間沒有選中 CONFIG_KDB_OFF ,那么在缺省情況下 KDB 是活動(dòng)的。否則,您需要顯式地激活它 - 通過在引導(dǎo)期間將kdb=on 標(biāo)志傳遞給內(nèi)核或者通過在掛裝了 /proc 之后執(zhí)行該工作:
#echo “1” >/proc/sys/kernel/kdb
倒過來執(zhí)行上述步驟則會(huì)取消激活 KDB。也就是說,如果缺省情況下 KDB 是打開的,那么將 kdb=off 標(biāo)志傳遞給內(nèi)核或者執(zhí)行下面這個(gè)操作將會(huì)取消激活 KDB:
#echo “0” >/proc/sys/kernel/kdb
在引導(dǎo)期間還可以將另一個(gè)標(biāo)志傳遞給內(nèi)核。 kdb=early 標(biāo)志將導(dǎo)致在引導(dǎo)過程的初始階段就把控制權(quán)傳遞給 KDB。如果您需要在引導(dǎo)過程初始階段進(jìn)行調(diào)試,那么這將有所幫助。 調(diào)用 KDB 的方式有很多。如果 KDB 處于打開狀態(tài),那么只要內(nèi)核中有緊急情況就自動(dòng)調(diào)用它。按下鍵盤上的 PAUSE 鍵將手工調(diào)用 KDB。調(diào)用 KDB 的另一種方式是通過串行控制臺(tái)。當(dāng)然,要做到這一點(diǎn),需要設(shè)置串行控制臺(tái)并且需要一個(gè)從串行控制臺(tái)進(jìn)行讀取的程序。按鍵序列 Ctrl-A 將從串行控制臺(tái)調(diào)用 KDB。
KDB 命令
KDB 是一個(gè)功能非常強(qiáng)大的工具,它允許進(jìn)行幾個(gè)操作,比如內(nèi)存和寄存器修改、應(yīng)用斷點(diǎn)和堆棧跟蹤。根據(jù)這些,可以將 KDB 命令分成幾個(gè)類別。
下面是有關(guān)每一類中最常用命令的詳細(xì)信息:內(nèi)存顯示和修改
這一類別中最常用的命令就是 md 、 mdr 、 mm 和 mmW 。 md 命令以一個(gè)地址/符號(hào)和行計(jì)數(shù)為參數(shù),顯示從該地址開始的 line-count 行的內(nèi)存。如果沒有指定 line-count ,那么就使用環(huán)境變量所指定的缺省值。如果沒有指定地址,那么 md 就從上一次打印的地址繼續(xù)。地址打印在開頭,字符轉(zhuǎn)換打印在結(jié)尾。 mdr 命令帶有地址/符號(hào)以及字節(jié)計(jì)數(shù),顯示從指定的地址開始的 byte-count 字節(jié)數(shù)的初始內(nèi)存內(nèi)容。它本質(zhì)上和 md 一樣,但是它不顯示起始地址并且不在結(jié)尾顯示字符轉(zhuǎn)換。 mdr 命令較少使用。
mm 命令修改內(nèi)容。它以地址/符號(hào)和新內(nèi)容作為參數(shù),用 new-contents 替換地址處的內(nèi)容。 mmW 命令更改從地址開始的 W 個(gè)字節(jié)。請(qǐng)注意, mm 更改一個(gè)機(jī)器字。 示例 顯示從 0xc000000 開始的 15 行內(nèi)存:
[0]kdb> md 0xc000000 15
將內(nèi)存位置為 0xc000000 上的內(nèi)容更改為 0x10:
[0]kdb> mm 0xc000000 0x10
寄存器顯示和修改
這一類別中的命令有 rd 、 rm 和 ef 。 rd 命令(不帶任何參數(shù))顯示處理器寄存器的內(nèi)容。它可以有選擇地帶三個(gè)參數(shù)。如果傳遞了 c 參數(shù),則 rd 顯示處理器的控制寄存器;如果帶有 d 參數(shù),那么它就顯示調(diào)試寄存器;如果帶有 u 參數(shù),則顯示上一次進(jìn)入內(nèi)核的當(dāng)前任務(wù)的寄存器組。
rm 命令修改寄存器的內(nèi)容。它以寄存器名稱和 new-contents 作為參數(shù),用 new-contents 修改寄存器。寄存器名稱與特定的體系結(jié)構(gòu)有關(guān)。目前,不能修改控制寄存器。 ef 命令以一個(gè)地址作為參數(shù),它顯示指定地址處的異常幀。 示例
顯示通用寄存器組:[0]kdb> rd[0]kdb> rm %ebx 0x25
斷點(diǎn)
常用的斷點(diǎn)命令有 bp 、 bc 、 bd 、 be 和 bl 。 bp 命令以一個(gè)地址/符號(hào)作為參數(shù),它在地址處應(yīng)用斷點(diǎn)。當(dāng)遇到該斷點(diǎn)時(shí)則停止執(zhí)行并將控制權(quán)交予 KDB。該命令有幾個(gè)有用的變體。 bpa 命令對(duì) SMP 系統(tǒng)中的所有處理器應(yīng)用斷點(diǎn)。 bph 命令強(qiáng)制在支持硬件寄存器的系統(tǒng)上使用它。 bpha 命令類似于 bpa 命令,差別在于它強(qiáng)制使用硬件寄存器。 bd 命令禁用特殊斷點(diǎn)。它接收斷點(diǎn)號(hào)作為參數(shù)。該命令不是從斷點(diǎn)表中除去斷點(diǎn),而只是禁用它。斷點(diǎn)號(hào)從 0 開始,根據(jù)可用性順序分配給斷點(diǎn)。 be 命令啟用斷點(diǎn)。該命令的參數(shù)也是斷點(diǎn)號(hào)。 bl 命令列出當(dāng)前的斷點(diǎn)集。它包含了啟用的和禁用的斷點(diǎn)。 bc 命令從斷點(diǎn)表中除去斷點(diǎn)。它以具體的斷點(diǎn)號(hào)或 * 作為參數(shù),在后一種情況下它將除去所有斷點(diǎn)。 示例
對(duì)函數(shù) sys_write() 設(shè)置斷點(diǎn):
[0]kdb> bp sys_write
列出斷點(diǎn)表中的所有斷點(diǎn):
[0]kdb> bl
清除斷點(diǎn)號(hào) 1:
[0]kdb> bc 1
堆棧跟蹤
主要的堆棧跟蹤命令有 bt 、 btp 、 btc 和 bta 。 bt 命令設(shè)法提供有關(guān)當(dāng)前線程的堆棧的信息。它可以有選擇地將堆棧地址作為參數(shù)。如果沒有提供地址,那么它就采用當(dāng)前寄存器來回溯堆棧。否則,它假定所提供的地址是有效的堆棧幀起始地址并設(shè)法進(jìn)行回溯。如果內(nèi)核編譯期間設(shè)置了CONFIG_FRAME_POINTER 選項(xiàng),那么就用幀指針寄存器來維護(hù)堆棧,從而就可以正確地執(zhí)行堆?;厮?。
如果沒有設(shè)置CONFIG_FRAME_POINTER ,那么 bt 命令可能會(huì)產(chǎn)生錯(cuò)誤的結(jié)果。 btp 命令將進(jìn)程標(biāo)識(shí)作為參數(shù),并對(duì)這個(gè)特定進(jìn)程進(jìn)行堆?;厮荨?/p>
btc 命令對(duì)每個(gè)活動(dòng) CPU 上正在運(yùn)行的進(jìn)程執(zhí)行堆?;厮?。它從第一個(gè)活動(dòng) CPU 開始執(zhí)行 bt ,然后切換到下一個(gè)活動(dòng) CPU,以此類推。
bta 命令對(duì)處于某種特定狀態(tài)的所有進(jìn)程執(zhí)行回溯。若不帶任何參數(shù),它就對(duì)所有進(jìn)程執(zhí)行回溯??梢杂羞x擇地將各種參數(shù)傳遞給該命令。將根據(jù)參數(shù)處理處于特定狀態(tài)的進(jìn)程。選項(xiàng)以及相應(yīng)的狀態(tài)如下:
- D:不可中斷狀態(tài)
- R:正運(yùn)行
- S:可中斷休眠
- T:已跟蹤或已停止
- Z:僵死
- U:不可運(yùn)行
這類命令中的每一個(gè)都會(huì)打印出一大堆信息。
示例
跟蹤當(dāng)前活動(dòng)線程的堆棧:
[0]kdb> bt
跟蹤標(biāo)識(shí)為 575 的進(jìn)程的堆棧:
[0]kdb> btp 575
其它命令
下面是在內(nèi)核調(diào)試過程中非常有用的其它幾個(gè)東西 KDB 命令。 id 命令以一個(gè)地址/符號(hào)作為參數(shù),它對(duì)從該地址開始的指令進(jìn)行反匯編。環(huán)境變量 IDCOUNT 確定要顯示多少行輸出。
ss 命令單步執(zhí)行指令然后將控制返回給 KDB。該指令的一個(gè)變體是 ssb ,它執(zhí)行從當(dāng)前指令指針地址開始的指令(在屏幕上打印指令),直到它遇到將引起分支轉(zhuǎn)移的指令為止。分支轉(zhuǎn)移指令的典型示例有 call 、 return 和 jump 。
go 命令讓系統(tǒng)繼續(xù)正常執(zhí)行。一直執(zhí)行到遇到斷點(diǎn)為止(如果已經(jīng)應(yīng)用了一個(gè)斷點(diǎn)的話)。
reboot 命令立刻重新引導(dǎo)系統(tǒng)。它并沒有徹底關(guān)閉系統(tǒng),因此結(jié)果是不可預(yù)測(cè)的。 ll 命令以地址、偏移量和另一個(gè) KDB 命令作為參數(shù)。它對(duì)鏈表中的每個(gè)元素反復(fù)執(zhí)行作為參數(shù)的這個(gè)命令。所執(zhí)行的命令以列表中當(dāng)前元素的地址作為參數(shù)。 示例
反匯編從例程 schedule 開始的指令。所顯示的行數(shù)取決于環(huán)境變量 IDCOUNT :
[0]kdb> id schedule
執(zhí)行指令直到它遇到分支轉(zhuǎn)移條件(在本例中為指令 jne )為止:
[0]kdb> ssb0xc0105355 default_idle+0x25: cli0xc0105356 default_idle+0x26: mov 0x14(%edx),%eax0xc0105359 default_idle+0x29: test %eax, %eax0xc010535b default_idle+0x2b: jne 0xc0105361 default_idle+0x31
技巧和訣竅
調(diào)試一個(gè)問題涉及到:使用調(diào)試器(或任何其它工具)找到問題的根源以及使用源代碼來跟蹤導(dǎo)致問題的根源。單單使用源代碼來確定問題是極其困難的,只有老練的內(nèi)核黑客才有可能做得到。相反,大多數(shù)的新手往往要過多地依靠調(diào)試器來修正錯(cuò)誤。這種方法可能會(huì)產(chǎn)生不正確的問題解決方案。我們擔(dān)心的是這種方法只會(huì)修正表面癥狀而不能解決真正的問題。此類錯(cuò)誤的典型示例是添加錯(cuò)誤處理代碼以處理 NULL 指針錯(cuò)誤地引用,卻沒有查出無效引用的真正原因。
結(jié)合研究代碼和使用調(diào)試工具這兩種方法是識(shí)別和修正問題的最佳方案。 調(diào)試器的主要用途是找到錯(cuò)誤的位置、確認(rèn)癥狀(在某些情況下還有起因)、確定變量的值,以及確定程序是如何出現(xiàn)這種情況的(即,建立調(diào)用堆棧)。有經(jīng)驗(yàn)的黑客會(huì)知道對(duì)于某種特定的問題應(yīng)使用哪一個(gè)調(diào)試器,并且能迅速地根據(jù)調(diào)試器獲取必要的信息,然后繼續(xù)分析代碼以識(shí)別起因。 因此,這里為您介紹了一些技巧,以便您能使用 KDB 快速地取得上述結(jié)果。當(dāng)然,要記住,調(diào)試的速度和精確度來自經(jīng)驗(yàn)、實(shí)踐和良好的系統(tǒng)知識(shí)(硬件和內(nèi)核的內(nèi)部機(jī)理等)。 技巧 #1
在 KDB 中,在提示處輸入地址將返回與之最為匹配的符號(hào)。這在堆棧分析以及確定全局?jǐn)?shù)據(jù)的地址/值和函數(shù)地址方面極其有用。同樣,輸入符號(hào)名則返回其虛擬地址。 示例 表明函數(shù) sys_read 從地址 0xc013db4c 開始:
[0]kdb> 0xc013db4c0xc013db4c = 0xc013db4c (sys_read)
同樣,表明 sys_write 位于地址 0xc013dcc8:
[0]kdb> sys_writesys_write = 0xc013dcc8 (sys_write)
這些有助于在分析堆棧時(shí)找到全局?jǐn)?shù)據(jù)和函數(shù)地址。 技巧 #2
在編譯帶 KDB 的內(nèi)核時(shí),只要 CONFIG_FRAME_POINTER 選項(xiàng)出現(xiàn)就使用該選項(xiàng)。為此,需要在配置內(nèi)核時(shí)選擇“Kernel hacking”部分下面的“Compile the kernel with frame pointers”選項(xiàng)。這確保了幀指針寄存器將被用作幀指針,從而產(chǎn)生正確的回溯。實(shí)際上,您可以手工轉(zhuǎn)儲(chǔ)幀指針寄存器的內(nèi)容并跟蹤整個(gè)堆棧。例如,在 i386 機(jī)器上,%ebp 寄存器可以用來回溯整個(gè)堆棧。
例如,在函數(shù) rmqueue() 上次執(zhí)行第一個(gè)指令后,堆??瓷先ヮ愃朴谙旅孢@樣:
[0]kdb> md %ebp0xc74c9f38 c74c9f60 c0136c40 000001f0 000000000xc74c9f48 08053328 c0425238 c04253a8 000000000xc74c9f58 000001f0 00000246 c74c9f6c c0136a250xc74c9f68 c74c8000 c74c9f74 c0136d6d c74c9fbc0xc74c9f78 c014fe45 c74c8000 00000000 08053328[0]kdb> 0xc0136c400xc0136c40 = 0xc0136c40 (__alloc_pages +0x44)[0]kdb> 0xc0136a250xc0136a25 = 0xc0136a25 (_alloc_pages +0x19)[0]kdb> 0xc0136d6d0xc0136d6d = 0xc0136d6d (__get_free_pages +0xd)
我們可以看到 rmqueue() 被 __alloc_pages 調(diào)用,后者接下來又被動(dòng) _alloc_pages 調(diào)用,以此類推。
每一幀的第一個(gè)雙字(double word)指向下一幀,這后面緊跟著調(diào)用函數(shù)的地址。因此,跟蹤堆棧就變成一件輕松的工作了。 技巧 #3
go 命令可以有選擇地以一個(gè)地址作為參數(shù)。如果您想在某個(gè)特定地址處繼續(xù)執(zhí)行,則可以提供該地址作為參數(shù)。另一個(gè)辦法是使用rm 命令修改指令指針寄存器,然后只要輸入 go 。如果您想跳過似乎會(huì)引起問題的某個(gè)特定指令或一組指令,這就會(huì)很有用。但是,請(qǐng)注意,該指令使用不慎會(huì)造成嚴(yán)重的問題,系統(tǒng)可能會(huì)嚴(yán)重崩潰。 技巧 #4
您可以利用一個(gè)名為 defcmd 的有用命令來定義自己的命令集。例如,每當(dāng)遇到斷點(diǎn)時(shí),您可能希望能同時(shí)檢查某個(gè)特殊變量、檢查某些寄存器的內(nèi)容并轉(zhuǎn)儲(chǔ)堆棧。通常,您必須要輸入一系列命令,以便能同時(shí)執(zhí)行所有這些工作。 defcmd 允許您定義自己的命令,該命令可以包含一個(gè)或多個(gè)預(yù)定義的 KDB 命令。然后只需要用一個(gè)命令就可以完成所有這三項(xiàng)工作。其語法如下:
[0]kdb> defcmd name “usage” “help”[0]kdb> [defcmd] type the commands here[0]kdb> [defcmd] endefcmd
例如,可以定義一個(gè)(簡(jiǎn)單的)新命令 hari ,它顯示從地址 0xc000000 開始的一行內(nèi)存、顯示寄存器的內(nèi)容并轉(zhuǎn)儲(chǔ)堆棧:
[0]kdb> defcmd hari “” “no arguments needed”[0]kdb> [defcmd] md 0xc000000 1[0]kdb> [defcmd] rd[0]kdb> [defcmd] md %ebp 1[0]kdb> [defcmd] endefcmd
該命令的輸出會(huì)是:
[0]kdb> hari[hari]kdb> md 0xc000000 10xc000000 00000001 f000e816 f000e2c3 f000e816[hari]kdb> rdeax = 0x00000000 ebx = 0xc0105330 ecx = 0xc0466000 edx = 0xc0466000…….[hari]kdb> md %ebp 10xc0467fbc c0467fd0 c01053d2 00000002 000a0200[0]kdb>
技巧 #5
可以使用 bph 和 bpha 命令(假如體系結(jié)構(gòu)支持使用硬件寄存器)來應(yīng)用讀寫斷點(diǎn)。這意味著每當(dāng)從某個(gè)特定地址讀取數(shù)據(jù)或?qū)?shù)據(jù)寫入該地址時(shí),我們都可以對(duì)此進(jìn)行控制。當(dāng)調(diào)試數(shù)據(jù)/內(nèi)存毀壞問題時(shí)這可能會(huì)極其方便,在這種情況中您可以用它來識(shí)別毀壞的代碼/進(jìn)程。 示例 每當(dāng)將四個(gè)字節(jié)寫入地址 0xc0204060 時(shí)間就進(jìn)入內(nèi)核調(diào)試器:
[0]kdb> bph 0xc0204060 dataw 4
在讀取從 0xc000000 開始的至少兩個(gè)字節(jié)的數(shù)據(jù)時(shí)進(jìn)入內(nèi)核調(diào)試器:
[0]kdb> bph 0xc000000 datar 2
結(jié)束語
對(duì)于執(zhí)行內(nèi)核調(diào)試,KDB 是一個(gè)方便的且功能強(qiáng)大的工具。它提供了各種選項(xiàng),并且使我們能夠分析內(nèi)存內(nèi)容和數(shù)據(jù)結(jié)構(gòu)。最妙的是,它不需要用另一臺(tái)機(jī)器來執(zhí)行調(diào)試。
Kprobes
Kprobes 是 Linux 中的一個(gè)簡(jiǎn)單的輕量級(jí)裝置,讓您可以將斷點(diǎn)插入到正在運(yùn)行的內(nèi)核之中。 Kprobes 提供了一個(gè)強(qiáng)行進(jìn)入任何內(nèi)核例程并從中斷處理器無干擾地收集信息的接口。使用 Kprobes 可以 輕松地收集處理器寄存器和全局?jǐn)?shù)據(jù)結(jié)構(gòu)等調(diào)試信息。開發(fā)者甚至可以使用 Kprobes 來修改 寄存器值和全局?jǐn)?shù)據(jù)結(jié)構(gòu)的值。 為完成這一任務(wù),Kprobes 向運(yùn)行的內(nèi)核中給定地址寫入斷點(diǎn)指令,插入一個(gè)探測(cè)器。 執(zhí)行被探測(cè)的指令會(huì)導(dǎo)致斷點(diǎn)錯(cuò)誤。Kprobes 鉤?。╤ook in)斷點(diǎn)處理器并收集調(diào)試信息。Kprobes 甚至可以單步執(zhí)行被探測(cè)的指令。
1 安裝
要安裝 Kprobes,需要從 Kprobes 主頁下載最新的補(bǔ)丁。 打包的文件名稱類似于 kprobes-2.6.8-rc1.tar.gz。解開補(bǔ)丁并將其安裝到 Linux 內(nèi)核:
$tar -xvzf kprobes-2.6.8-rc1.tar.gz $cd /usr/src/linux-2.6.8-rc1 $patch -p1 < ../kprobes-2.6.8-rc1-base.patch
Kprobes 利用了 SysRq 鍵,這個(gè) DOS 時(shí)代的產(chǎn)物在 Linux 中有了新的用武之地。您可以在 Scroll Lock鍵左邊找到 SysRq 鍵;它通常標(biāo)識(shí)為 Print Screen。要為 Kprobes 啟用 SysRq 鍵,需要安裝 kprobes-2.6.8-rc1-sysrq.patch 補(bǔ)?。?/p>
$patch -p1 < ../kprobes-2.6.8-rc1-sysrq.patch
使用 make xconfig/ make menuconfig/ make oldconfig 配置內(nèi)核,并 啟用 CONFIG_KPROBES 和 CONFIG_MAGIC_SYSRQ標(biāo)記。 編譯并引導(dǎo)到新內(nèi)核。您現(xiàn)在就已經(jīng)準(zhǔn)備就緒,可以插入 printk 并通過編寫簡(jiǎn)單的 Kprobes 模塊來動(dòng)態(tài)而且無干擾地 收集調(diào)試信息。
2 編寫 Kprobes 模塊
對(duì)于每一個(gè)探測(cè)器,您都要分配一個(gè)結(jié)構(gòu)體 struct kprobe kp; (參考 include/linux/kprobes.h 以獲得關(guān)于此數(shù)據(jù)結(jié)構(gòu)的詳細(xì)信息)。 清單 9. 定義 pre、post 和 fault 處理器
/* pre_handler: this is called just before the probed instruction is * executed. */int handler_pre(struct kprobe *p, struct pt_regs *regs) {printk(“pre_handler: p->addr=0x%p, eflags=0x%lx “,p->addr,regs->eflags);return 0;}/* post_handler: this is called after the probed instruction is executed * (provided no exception is generated). */void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags) {printk(“post_handler: p->addr=0x%p, eflags=0x%lx “, p->addr,regs->eflags);}/* fault_handler: this is called if an exception is generated for any * instruction within the fault-handler, or when Kprobes * single-steps the probed instruction. */int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr) {printk(“fault_handler:p->addr=0x%p, eflags=0x%lx “, p->addr,regs->eflags);return 0;}
2.1 獲得內(nèi)核例程的地址 在注冊(cè)過程中,您還需要指定插入探測(cè)器的內(nèi)核例程的地址。使用這些方法中的任意一個(gè)來獲得內(nèi)核例程 的地址:
從 System.map 文件直接得到地址。
例如,要得到 do_fork 的地址,可以在命令行執(zhí)行 $grep do_fork /usr/src/linux/System.map 。
使用 nm 命令。
$nm vmlinuz |grep do_fork
從 /proc/kallsyms 文件獲得地址。
$cat /proc/kallsyms |grep do_fork
使用 kallsyms_lookup_name() 例程。
這個(gè)例程是在 kernel/kallsyms.c 文件中定義的,要使用它,必須啟用 CONFIG_KALLSYMS 編譯內(nèi)核。kallsyms_lookup_name() 接受一個(gè)字符串格式內(nèi)核例程名, 返回那個(gè)內(nèi)核例程的地址。例如:kallsyms_lookup_name(“do_fork”);
然后在 init_moudle 中注冊(cè)您的探測(cè)器: 清單 10. 注冊(cè)一個(gè)探測(cè)器
/* specify pre_handler address */kp.pre_handler=handler_pre;/* specify post_handler address */kp.post_handler=handler_post;/* specify fault_handler address */kp.fault_handler=handler_fault;/* specify the address/offset where you want to insert probe. * You can get the address using one of the methods described above. */kp.addr = (kprobe_opcode_t *) kallsyms_lookup_name(“do_fork”);/* check if the kallsyms_lookup_name() returned the correct value. */if (kp.add == NULL) {printk(“kallsyms_lookup_name could not find addressfor the specified symbol name “);return 1;}/* or specify address directly. * $grep “do_fork” /usr/src/linux/System.map * or * $cat /proc/kallsyms |grep do_fork * or * $nm vmlinuz |grep do_fork */kp.addr = (kprobe_opcode_t *) 0xc01441d0;/* All set to register with Kprobes */ register_kprobe(&kp);
一旦注冊(cè)了探測(cè)器,運(yùn)行任何 shell 命令都會(huì)導(dǎo)致一個(gè)對(duì) do_fork 的調(diào)用,您將可以在控制臺(tái)上或者運(yùn)行 dmesg 命令來查看您的 printk。做完后要記得注銷探測(cè)器: unregister_kprobe(&kp); 下面的輸出顯示了 kprobe 的地址以及 eflags 寄存器的內(nèi)容:
$tail -5 /var/log/messages Jun 14 18:21:18 llm05 kernel: pre_handler: p->addr=0xc01441d0, eflags=0x202 Jun 14 18:21:18 llm05 kernel: post_handler: p->addr=0xc01441d0, eflags=0x196
獲得偏移量
您可以在例程的開頭或者函數(shù)中的任意偏移位置插入 printk(偏移量必須在指令范圍之內(nèi))。 下面的代碼示例展示了如何來計(jì)算偏移量。首先,從對(duì)象文件中反匯編機(jī)器指令,并將它們 保存為一個(gè)文件:
$objdump -D /usr/src/linux/kernel/fork.o > fork.dis
其結(jié)果是: 清單 11. 反匯編的 fork
000022b0 : 22b0: 55 push %ebp 22b1: 89 e5 mov %esp,%ebp 22b3: 57 push %edi 22b4: 89 c7 mov %eax,%edi 22b6: 56 push %esi 22b7: 89 d6 mov %edx,%esi 22b9: 53 push %ebx 22ba: 83 ec 38 sub $0x38,%esp 22bd: c7 45 d0 00 00 00 00 movl $0x0,0xffffffd0(%ebp) 22c4: 89 cb mov %ecx,%ebx 22c6: 89 44 24 04 mov %eax,0x4(%esp) 22ca: c7 04 24 0a 00 00 00 movl $0xa,(%esp) 22d1: e8 fc ff ff ff call 22d2 0x22> 22d6: b8 00 e0 ff ff mov $0xffffe000,%eax 22db: 21 e0 and %esp,%eax 22dd: 8b 00 mov (%eax),%eax
要在偏移位置 0x22c4 插入探測(cè)器,先要得到與例程的開始處相對(duì)的偏移量 0x22c4 – 0x22b0 = 0x14 ,然后將這個(gè)偏移量添加到 do_fork 的地址 0xc01441d0 + 0x14 。(運(yùn)行 $cat /proc/kallsyms | grep do_fork 命令以獲得 do_fork 的地址。) 您還可以將 do_fork 的相對(duì)偏移量 0x22c4 – 0x22b0 = 0x14 添加到 kallsyms_lookup_name(“do_fork”); 的輸入,即:0x14 + kallsyms_lookup_name(“do_fork”); 轉(zhuǎn)儲(chǔ)內(nèi)核數(shù)據(jù)結(jié)構(gòu)
現(xiàn)在,讓我們使用修改過的用來轉(zhuǎn)換數(shù)據(jù)結(jié)構(gòu)的 Kprobe post_handler 來轉(zhuǎn)儲(chǔ)運(yùn)行在系統(tǒng)上的所有作業(yè)的一些組成部分: 清單 12. 用來轉(zhuǎn)儲(chǔ)數(shù)據(jù)結(jié)構(gòu)的修改過的 Kprope post_handler
void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags) { struct task_struct *task; read_lock(&tasklist_lock); for_each_process(task) { printk(“pid =%x task-info_ptr=%lx “, task->pid, task->thread_info); printk(“thread-info element status=%lx,flags=%lx,cpu=%lx “, task->thread_info->status, task->thread_info->flags, task->thread_info->cpu); } read_unlock(&tasklist_lock);}
這個(gè)模塊應(yīng)該插入到 do_fork 的偏移位置。 清單 13. pid 1508 和 1509 的結(jié)構(gòu)體 thread_info 的輸出
$tail -10 /var/log/messagesJun 22 18:14:25 llm05 kernel: thread-info element status=0,flags=0, cpu=1Jun 22 18:14:25 llm05 kernel: pid =5e4 task-info_ptr=f5948000Jun 22 18:14:25 llm05 kernel: thread-info element status=0,flags=8, cpu=0Jun 22 18:14:25 llm05 kernel: pid =5e5 task-info_ptr=f5eca000
啟用奇妙的 SysRq 鍵
為了支持 SysRq 鍵,我們已經(jīng)進(jìn)行了編譯。這樣來啟用它:
$echo 1 > /proc/sys/kernel/sysrq
現(xiàn)在,您可以使用 Alt+SysRq+W 在控制臺(tái)上或者到 /var/log/messages 中去查看所有插入的內(nèi)核探測(cè)器。 清單 14. /var/log/messages 顯示出在 do_fork 插入了一個(gè) Kprobe
Jun 23 10:24:48 linux-udp4749545uds kernel: SysRq : Show kprobesJun 23 10:24:48 linux-udp4749545uds kernel:Jun 23 10:24:48 linux-udp4749545uds kernel: [] do_fork+0x0/0x1de
使用 Kprobes 更好地進(jìn)行調(diào)試
由于探測(cè)器事件處理器是作為系統(tǒng)斷點(diǎn)中斷處理器的擴(kuò)展來運(yùn)行,所以它們很少或者根本不依賴于系統(tǒng) 工具 —— 這樣可以被植入到大部分不友好的環(huán)境中(從中斷時(shí)間和任務(wù)時(shí)間到禁用的上下文間切換和支持 SMP 的代碼路徑)—— 都不會(huì)對(duì)系統(tǒng)性能帶來什么負(fù)面影響。
使用 Kprobes 的好處有很多。不需要重新編譯和重新引導(dǎo)內(nèi)核就可以插入 printk。為了進(jìn)行調(diào)試可以記錄 處理器寄存器的日志,甚至進(jìn)行修改 —— 不會(huì)干擾系統(tǒng)。類似地,同樣可以無干擾地記錄 Linux 內(nèi)核數(shù)據(jù)結(jié)構(gòu)的日志,甚至是 進(jìn)行修改。您甚至可以使用 Kprobes 調(diào)試 SMP 系統(tǒng)上的靜態(tài)條件 —— 避免了您自己重新編譯和重新引導(dǎo)的所有 麻煩。您將發(fā)現(xiàn)內(nèi)核調(diào)試比以往更為快速和簡(jiǎn)單。